Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microorganisms ; 11(3)2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2257399

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.

2.
ChemMedChem ; 16(23):3495-3495, 2021.
Article in English | Wiley | ID: covidwho-1557779

ABSTRACT

The Front Cover shows bithiazole derivatives acting as broad-spectrum antiviral agents (BSAAs) by targeting human host cells. These molecules block the replication of human rhinoviruses (hRVs) and Zika virus (ZIKV) via inhibition of the intracellular protein PI4KIII? while the inhibition of SARS-CoV-2 entry and replication seems to be connected with the modulation of an additional target. Cover design by Marco Radi. More information can be found in the Communication by Maria?Grazia Martina, Marco Radi et?al.

3.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1400781

ABSTRACT

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Antiviral Agents/pharmacology , Enzyme Inhibitors/chemistry , Rhinovirus/physiology , SARS-CoV-2/physiology , Thiazoles/chemistry , Virus Replication/drug effects , Zika Virus/physiology , 1-Phosphatidylinositol 4-Kinase/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , SARS-CoV-2/isolation & purification , Thiazoles/metabolism , Zika Virus/isolation & purification , Zika Virus Infection/pathology
SELECTION OF CITATIONS
SEARCH DETAIL